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Abstract

This paper discusses a number of issues relating to the analysis of uncertain systems or data in the context
of (low-frequency) structural dynamics. In order to illustrate potential problems in applying ‘classical’
uncertainty analysis methods to nonlinear systems, a simple nonlinear system is simulated and the
breakdown of two standard approaches is demonstrated on data from the system. By relaxing the
requirements of the analysis, it is shown that an alternative uncertainty theory gives useful qualitative
information about the system. This motivates a discussion of how uncertainty frameworks should be
chosen to suit the problem in hand and leads to a clustering of uncertainty problems in structural dynamics
into three types: quantification, fusion and propagation.
r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

The traditional methods of engineering design are based on a cycle running from design
through prototyping and validation to design update. This cycle is time-consuming and costly and
is gradually yielding to a virtual process whereby prototyping and validation are carried as far as
possible in computer simulation or modelling. The economic advantages of such a strategy are
see front matter r 2005 Elsevier Ltd. All rights reserved.

jsv.2005.07.008

ding author. Tel.: +44 114 222 7758; fax: +44 114 222 7890.

ress: k.worden@sheffield.ac.uk (K. Worden).

www.elsevier.com/locate/jsvi


ARTICLE IN PRESS

K. Worden et al. / Journal of Sound and Vibration 288 (2005) 601–621602
clear. However, there are also other considerations. For example in the arena of nuclear weapons
research, current test bans place an embargo on certain types of experimental validation.
There are two obvious caveats associated with a reliance on computational simulation. Firstly,

the process of validation must be as rigorous as possible and anticipate any working environment
that the designed structure or system might encounter. Secondly, the modelling process should be
robust to uncertainty. To elaborate on this second point, which is the subject of this paper, it is
not enough to have a high-fidelity model of a system or structure without an understanding of
how uncertainty propagates through the model. Consider a complex component incorporating
inelastic materials, contacts, friction, etc. The model requires an initial specification of material
properties, clearances and friction coefficients. The response of the model will only be as accurate
as these initial values, yet the values may be subject to large uncertainty; consider the difficulty in
characterising viscoelastics or even biomaterials. In a worst case analysis, the predictions of the
model may prove highly sensitive to variations in the input parameters.
Another compelling reason for uncertainty quantification is the fact that the environmental and

operational conditions for certain engineering projects are unknown and cannot be estimated with
certainty. Alternatively, conditions can be estimated, but cannot be recreated exactly in validation
experiments. Consider the design and manufacture of an in-orbit facility. In this case, aspects of
the true environment, such as weightlessness and absence of drag, can be reproduced to an extent
in terrestrial experiments. However, consider the design of an exploration module intended to
operate on the surface of Venus. Such systems are extremely expensive and will often have only
one chance to succeed. The performance of the Hubble telescope, and more recently of the Beagle
explorer, are object lessons here.
Another prime motivator for uncertainty analysis is the need for risk assessment in safety

critical systems. In fact, one might argue that the modern origins of the subject are here with
projects like the Nuclear Reactor Safety Study [1]. One of the main regulators in the design of
Structural Health Monitoring (SHM) systems for say, civil aircraft, will be the need to eliminate
false assertions of damage as a result of environmental and operational variations. Such false
positives and the ensuing ‘no fault found’ inspections would substantially increase the cost of
ownership of the aircraft. Even more critical is the possibility of a false negative as a result of
environmental uncertainty, with potential loss of life the result.
One traditional approach to assessing uncertainty in a response is to carry out a Monte Carlo

exercise, whereby the input parameters to the model are varied over their possible values, perhaps with
a given probability distribution. This allows the modeller to assemble statistical information about the
response as a function of input parameter variation and ultimately specify a distribution for the model
response characteristics of interest. The problem with this approach is that very many runs of the
model are required for a confident estimate of the statistics, and the number of runs grows explosively
with the number of input parameters considered. If the model itself is complicated, e.g. a FE model
with many nodes, the cost associated with many simulations may be prohibitive.
To give an idea of the intensive nature of uncertainty calculations; in the year 2000, Los Alamos

National Laboratories (LANL) in the US ran an unprecedented calculation on one of the most
powerful computers in the world—the platform Blue Mountain. The computation essentially
attempted to quantify the propagation of uncertainty through a nonlinear finite element (FE)
model of a weapon component under blast loading. The specific objective of the exercise was to
determine the model sensitivity to certain input parameters—preloads and friction coefficients,
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etc. The calculation made use of 3968 processors from the available 6000 and used concurrently
nearly 4000 ABAQUS/Explicit licences. The analysis took over 72 h and would have required 17.8
years of equivalent single-processor time [2].
An appropriate model of uncertainty is a vital element in the design and modelling procedure

for high-value engineering structures and systems—this is the problem of quantification. As
discussed later, there are numerous theoretical frameworks which allow a specification of
uncertainty, the broader problem of quantification involves selecting the appropriate theoretical
framework and then assigning a quantitative measure of uncertainty or risk. Given that there is
more than one way of assigning a measure of risk, the problem arises of translating between them.
This problem of normalisation is broadened into one of fusion by posing the question: given two
assignments of uncertainty from different frameworks, how can one refine each estimate in the
light of the extra information from the other? Equally important in the design process is a
prescription for deciding how a measure of uncertainty on the inputs or specification of a problem
will affect the outputs or results. This is the problem of propagation. Part of this problem is to find
which parameters contribute most to output uncertainty. These parameters will require the most
effort to estimate in the a priori specification of the problem.
The object of this paper is to illustrate the problems of quantification and propagation with

respect to a particular simple nonlinear system. The reason for the choice of system is to show that
even a simple nonlinear system raises questions about the applicability of standard reliability
algorithms for computing uncertainty propagation. Here, it is shown that two often-used
techniques break down catastrophically. It is important to raise this issue; the complex calculation
at LANL described above was nonlinear. It is not intended that one should extrapolate directly
from the Duffing oscillator simulated here to the complex LANL model as far too little is known
about nonlinear systems with very high numbers of degrees-of-freedom. However, it is important
to be aware that there are potential caveats in modelling nonlinear systems. One reason for the
breakdown of the techniques applied is that the algorithms asked for probabilistic information
and the problem is more suited to a different means of quantification. A possible solution for the
case discussed in this paper is shown.
The layout of the paper is as follows. The next section describes the simple nonlinear system

which forms the basis of the calculations here. Section 3 describes how this system leads to
complex behaviour which foils attempts to build simple parametric models. Sections 4 and 5
investigate the structure of the data in more detail and suggest that it has a self-similar structure
which makes a simple parametric analysis impossible. Section 6 briefly explains how and why a
first-order reliability method (FORM) breaks down for the problem. Section 7 raises the
possibility of using alternative uncertainty frameworks and illustrates how this is used to
advantage for the nonlinear system. The paper concludes with some discussion in Section 8.
2. A simple nonlinear system

The system under investigation here is arguably the most basic nonlinear system studied in
structural dynamics—the harmonically forced Duffing oscillator with equation of motion,

m €y þ c _y þ ky þ k3y
3 ¼ X cosðotÞ. (1)



ARTICLE IN PRESS

K. Worden et al. / Journal of Sound and Vibration 288 (2005) 601–621604
If k3 ¼ 0, the system is linear and well understood. The response is simply,

yðtÞ ¼ Y cosðot � fÞ, (2)

where the gain Y=X and phase f of the response at a given o are unique, i.e. there is only one
possible stable response. In terms of the frequency response function (FRF) of the system, the
FRF is single-valued at all frequencies. If k3a0, a harmonic balance approach to finding the
response yields a cubic equation for the response amplitude (actually Y 2),

X 2 ¼ Y 2 �mo2 þ k þ
3

4
k3Y

2

� �2
þ c2o2

( )
. (3)

Depending on the value of o, this equation can have one or three real roots and thus three
possible response amplitudes. The situation is illustrated in Fig. 1 which shows the system FRF.
Below a certain frequency, olow, there is only a single stable solution. This is also true above a
frequency ohigh. However, in the interval between these frequencies there are three possible
response amplitudes, in decreasing order of magnitude these are yð1Þ, yð2Þ and yð3Þ. In practice, the
solution yð2Þ is unstable and thus never observed. In summary, in the interval between olow and
ohigh there coexists a possible low amplitude and a possible high amplitude response. Which
response is actually produced in a given situation depends on the initial conditions for the system.
It will be shown that this dependence is quite complicated.
The values of olow and ohigh can be computed by appealing to a standard result from algebra

[3]. Each cubic has defined, a discriminant D which is a function of the coefficients. If Do0, the
cubic has one real root, if D40 it has three. As the coefficients of Eq. (3) are functions of o, the
discriminant is also. With a little help from a computer algebra package, it was shown in Ref. [3]
A
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Fig. 1. Multiple solutions in Duffing oscillator FRF.
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that the discriminant associated with Eq. (3) is,

D ¼
256

729k6
3

ð�64c2k4o2 � 128c4k2o4 þ 256c2k3mo4

� 64c6o6 þ 256c4kmo6 � 384c2k2m2o6 � 128c4m2o8

þ 256c2km3o8 � 64c2m4o10 � 48k3k3X
2

� 432c2kk3X
2o2 þ 144k2k3mX 2o2 þ 432c2k3mX 2o4

� 144kk3m
2X 2o4 þ 48k3m

3X 2o6 � 243k2
3X

4Þ. ð4Þ

The bifurcation points olow and ohigh must therefore correspond to roots of D ¼ 0. However, this
equation is a quintic in o2 and can thus have five independent solutions for o. Fortunately, it
turns out in practice to have only two real roots and three complex. The lowest real root is olow

and the highest is ohigh.
3. Uncertainty propagation: response surface analysis

When faced with an extremely expensive computation, one possibility is to establish a fast-
running or surrogate model which approximates the response of the system or structure. Such a
model is trained to reproduce the results from the true model on a given training set and can be
used to interpolate over the range of input parameters for the purposes of statistical modelling.
Models of this type can be as simple as a response surface [4]. The desired response characteristic R

is obtained for a set of values of the input parameters y1; y2; . . . ; yn and a regression model of the
form R ¼ Rðy1; . . . ; ynÞ is estimated. The particular regression model could be as simple as a
multinomial or as advanced as a Support Vector Machine. This section considers the problem of
establishing a type of response surface for the ‘simple’ nonlinear system described in the last
section.
Before attempting to characterise how uncertainty propagates through the system, a series of

simulations were conducted in order to illustrate the difficulties associated with fitting a response
surface for certain input parameters. Those considered here are the initial displacement and
velocity of the system ðy0; _y0Þ and the frequency of excitation o. The response characteristic of
interest will be the amplitude of the response Y. Predicting the amplitude for the nonlinear system
is non-trivial, but important, as one is essentially faced with a low or potentially high response
level with the attendant consequences for fatigue, etc. Note that the problem for the underlying
linear system is trivial as the response surface Y ¼ Y ðy0; _y0;oÞ collapses to Y ¼ Y ðoÞ as a result
of the decay of transients. The remaining functional variation is captured by the standard FRF.
The response surface is smooth in o and invariant over the initial conditions.
In order to produce concrete results, it is necessary to fix the coefficients of the Duffing

oscillator in Eq. (1) and the excitation level X. In order to induce strong nonlinearity, the
coefficients m ¼ 1, c ¼ 20, k ¼ 104 and k3 ¼ 5� 109 were taken in combination with X ¼ 10.
Solving the discriminant equation from Eq. (4) with these values gave olow ¼ 151:98 rad=s and
ohigh ¼ 190:01 rad=s. When compared with the undamped natural frequency of 100 rad/s for the
underlying linear system, these values show that the effect of the nonlinearity is dramatic.
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Fig. 2. Initial conditions ðy0; _y0Þ; basins of attraction just above olow.
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The first illustration shows the effect of varying the initial displacement and velocity on the
response amplitude at a fixed o just above olow. Initial displacements were taken in the range
0–0.5 and initial velocities in the range 0–76 ð0:5� olowÞ. Each simulation, which was
accomplished using fourth-order Runge–Kutta, was continued until the response had stabilised
at either the low or high value. Fig. 2 shows a contour map of the response amplitude over the
ðy0; _y0Þ plane.
Far from a smooth variation, the figure shows a dust of low-amplitude solutions against a

background of high-amplitude solutions. Such a surface would be impossible to model as the low-
amplitude solutions appear to be randomly distributed. Note that isolated points in the figure
appear as regions as a result of the interpolative shading of the graphics package. It will be shown
later that the low-amplitude points are in fact isolated.
Fig. 3 shows the amplitude map for a range of initial conditions when the driving frequency is

just below ohigh. As in Fig. 2, the response shows dust. However, the role of the high- and low-
amplitude solutions is reversed with the low amplitude providing the background. This result
should not come as surprise to those familiar with nonlinear dynamics. In the literature of chaos
[5], it is well known that the basins of attraction of coexistent solutions of a nonlinear dynamical
system can have quite complex structure including fractal basin boundaries.
The next simulation fixed the initial displacement at zero and investigated the amplitude

variation as a function of uncertainty in the initial velocity and forcing frequency. The velocity
range was taken as before and the value of o was varied between olow and ohigh. Fig. 4 shows the
result.
A rather different aspect is shown, there appear to be vertical ridges distributed irregularly in

the response. In fact, this irregularity is an artefact of the resolution. Fig. 5 shows the response
over a (cross-shaped) subregion of the plot in Fig. 4 and reveals that the surface is characterised
by periodically appearing ridges. One might deduce from this that there is some hope of fitting a
surrogate model here as the periodicity in the initial velocity axis could be captured by, for
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example, a Fourier series. In fact this might be true in the coarse representation shown in Fig. 5,
but a more close look reveals more complex structure. Fig. 6 shows a 100� magnification of a
region in Fig. 5 in the vicinity of a basin boundary. There is clearly finer structure, which might on
closer examination, prove to be fractal.
The final set of simulations investigated the effect of varying the initial displacement and

forcing frequency. The initial velocity was fixed at zero and the initial displacement was taken in
the interval (0,0.5) with o between its high- and low-bifurcation points as before. Fig. 7 shows the
response map for the coarse mesh of simulations.
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Fig. 8 zooms in on the region between o ¼ 171 and o ¼ 176 ðrad=sÞ with initial displacements
in the range 0.22–0.28. This represents a ten-fold increase in resolution over Fig. 7. Fig. 9 shows a
further 10-fold increase in resolution showing the response between o values of 174.1 and
174.7 (rad/s) and initial displacement values between 0.255 and 0.261.
The sequence of Figs. 7–9 shows that response map has the same characteristics at three

different levels of resolution. This type of scale invariance is evidence of underlying self-similarity
[8]. The figures suggest that there is an underlying structure to the data; however it is far from
what is required to fit a smooth response surface. The next two sections take up the question of
what structure is present.
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4. Fourier analysis

The first attempt to look for structure in the response data used Fourier analysis to look for
periodicities in the data. In order to simplify matters by allowing one-dimensional Fourier
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transforms, sections were taken through the ðy0;oÞ response map at o ¼ 157, o ¼ 174 and o ¼

187 (all rad/s). 262,144 (218) elements were taken over the range of initial displacements at these
frequencies. The analysis here will concentrate on the o ¼ 157 rad=s sequence. Fig. 10 shows a
segment of 500 samples taken from the centre of the record.
The signal appears very similar to a pseudo-random binary sequence (PRBS), i.e. it jumps

between two values at apparently random intervals. The randomness would lead one to suggest
that the spectrum was broadband. Fourier transformation would be expected to reveal if this was
the case or if there appeared to be significant periodicities. Fig. 11 gives the FFT of the first half of
the sequence and does not appear to indicate any obvious cycles. Apart from a region of increased
energy at very low frequencies, the spectrum appears flat. This behaviour is clarified considerably
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in Fig. 12, which this time shows the power spectrum SzzðoÞ averaged over 256 non-overlapping
segments of 512 points each. (Here, zðxÞ denotes the spatial series. Note that strictly speaking, the
abscissa of the spectrum should be wavenumber rather than frequency, this is considered here as a
trivial matter of normalisation.) This implies a randomness to the sequence. However, if the
sequence is truly random, the only real hope for a structural model is a probability density
function. In this case, there are two discrete outcomes—high or low amplitude, so the PDF
collapses to a single probability, e.g. that of low amplitude.
Summing the outcomes over the three sections gives the probability of obtaining the low-

amplitude solutions as: 0.845 at o ¼ 157 rad=s; 0.530 at o ¼ 174 rad=s; 0.238 at o ¼ 187 rad=s.
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This sort of specification is the best that can be achieved if the spatial sequences extracted are truly
random. However, randomness does not mean the complete absence of structure and the next
section attempts to discover scaling or self-similar structure in the data. In many ways, this is a
digression as it is not clear how the presence or otherwise of such structure would allow the
refinement of a probabilistic response model. The technique used is based on the ideas of wavelet
analysis.
5. Wavelet analysis

5.1. Wavelets

Although wavelet analysis is now widespread in engineering, for the sake of completeness and
to establish notation, a brief description of the relevant wavelet theory is given. More detailed
analysis can be found in Ref. [6].
Let L2ðRÞ denote the space of measurable square-integrable functions xðtÞ defined on ¼

ð�1;þ1Þ which represent analog signals with finite energy. The wavelet transform is a linear
transformation on this space that decomposes a given function xðtÞ into a superposition of
elementary functions (a basis) ga;bðtÞ derived from an analysing or mother wavelet gðtÞ by scaling
and translation i.e.,

ga;bðtÞ ¼ g�
t � b

a

� �
, (5)

where � denotes complex conjugation, b is a translation parameter indicating the locality and a is
a dilation or scale parameter. The continuous Grossman–Morlet wavelet transform is defined as

W x
gða; bÞ ¼

1ffiffiffi
a

p

Z þ1

�1

xðtÞ g�
t � b

a

� �
dt. (6)

For the function gðtÞ to qualify as an analysing wavelet, it must satisfy appropriate admissibility
conditions [6].
In much the same way as for the Fourier transform, a discrete version of the wavelet transform

is available for computational purposes. Using a binary dilation and a dyadic translation, the
orthogonal wavelet transform can be defined. A function cðtÞ is called an orthogonal wavelet if the
family cm;kðtÞ ¼ 2m=2cð2mt � kÞ forms an orthonormal basis of L2ðRÞ, that is hcm;k;cn;li ¼

dm;n � dk;l, for all integer m; n; k; l, where h; i is the usual inner product and dm;n is the Kronecker
symbol.
In the following, the wavelets of Daubechies [6] are used in the orthogonal wavelet

decomposition,

xðtÞ ¼
X
m;k

xm
k cm;kðtÞ, (7)

where the xm
k are the coefficients. The orthonormal basis is obtained using Mallat’s pyramid

algorithm [7]. Note that this algorithm is OðnÞ and is thus faster than the FFT algorithm.
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5.2. Wavelets and fractals

It is well known that stationary periodic series are invariant under translations in the time
domain. As a consequence, the statistics of these processes are also invariant under translations.
The Fourier series or transform are the main mathematical tools for the analysis of such
translation-invariant processes.
There exist many physical signals which display invariance, not under translation but under

scale change. Such signals have fractal waveforms. One important group of these waveforms is the
set of statistically scale-invariant or self-similar random processes known as 1=f processes. Here
scale-invariance means that, statistically, the process is embedded within itself at different scales.
Due to the time-scale nature of the wavelet transform, it is well equipped to study such self-similar
processes. In fact, it can be shown that the self-similarity of a given signal xðtÞ implies self-
similarity of its wavelet transform W x

cða; bÞ in the time-scale domain.
The 1=f family of statistically self-similar random processes are formally defined as processes

with a spectrum of the form [8],

SxðoÞ ¼
s2x
jojg

, (8)

where g is termed the spectral parameter. The exponent g is related to the self-similarity in the
following sense. A random process xðtÞ is statistically self-similar if for any real a40 it obeys the
scaling relation [8],

xðtÞ � a�HxðatÞ, (9)

where the equivalence means that the two processes have the same statistics. In the strict sense,
this means all statistical moments are equal, in the wide sense the condition is only enforced up to
second order, i.e.,

xðtÞ ¼ a�HxðatÞ (10)

and

fxðt; sÞ ¼ xðtÞxðsÞ ¼ a�2Hfxðat; asÞ. (11)

In all cases, H is a constant—the self-similarity parameter. To give a concrete example of such a
process, zero-mean stationary white Gaussian noise wðtÞ has H ¼ �1=2. As one might expect, the
self-similarity parameter for a 1=f process depends only on the spectral exponent, in fact it can be
shown that g ¼ 2H þ 1. Given that the spectrum of wðtÞ is independent of frequency, it
immediately follows that H ¼ �1=2 and vice versa.
1=f processes are of considerable interest as many physical processes exhibit the spectral

behaviour given in Eq. (8).
A number of wavelet-based algorithms have been developed to study self-similar processes. The

algorithm used in this paper is based on the statistical properties of the orthogonal wavelet
coefficients [8].
The key result is that the variance of the orthogonal wavelet coefficients of a given 1=f process,

takes the form,

varxm
n ¼ s22�gm, (12)
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where the variance is taken over ‘time’ n and s is given by

s2 ¼
s2x
2p

Z 1

�1

jCðoÞj2

jojg
do, (13)

where CðoÞ is the Fourier transform of the mother wavelet.
It is a trivial consequence of Eq. (12) that the log variance of xm

n plotted against level m is a
straight line with gradient �g. It also shows that the variance of the wavelet coefficients for 1=f
processes obey a geometric progression consistent with the statistically self-similar structure of the
process. Neglecting low m effects (as described later), 1=f processes are characterised by the semi-
logarithmic plot of the wavelet coefficient variances.
It can further be shown that wavelet coefficients are wide-sense stationary at each fixed scale m.

The normalised wavelet correlation, defined as [8]

rm;m
n;n�l ¼

E½xm
n xm

n�l �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðvarxm

n Þðvarxm
n�lÞ

p (14)

is a function only of the lag l for a given value of scale m.
Processes corresponding to 1ogo3, which exhibit infinite low-frequency power are known as

the fractional Brownian motions; classical Brownian motion is a special case corresponding to
g ¼ 2. Processes corresponding to �1ogo1 show infinite high-frequency power and are termed
the fractional Gaussian noises; classical white stationary Gaussian noise is a special case with g ¼ 0
[8].
In the case of fractional Brownian motions, the Hausdorff–Besicovitch fractal dimension D of

the signal, is related to the self-similarity parameter by [8],

D ¼ 2� H (15)

and to the spectral exponent by,

D ¼
5� g
2

. (16)

Note that the self-similarity discussed here is distinct from that usually analysed. Most often, it is
the self-similarity or fractal dimension of the underlying phase space attractor of the nonlinear
system which is the issue. Here, the concern is with the statistical self-similarity and dimension of
the time-series itself.

5.3. Application to the data

In order to minimise edge effects for the spatial sequence of response amplitudes, the data from
the second quarter of the range was analysed using the wavelet variance approach. This means
that the record contained 65,536 points. For the first analysis, a Daubechies D ¼ 4 mother wavelet
was adopted. The resulting coefficient variance plot is given in Fig. 13.
The gradient of the line �g is zero for this signal. This might be expected from observing the flat

spectrum in Fig. 12, the result is consistent with the data representing a 1=f process with g ¼ 0.
The corresponding self-similarity parameter H is �1=2. Note that there is some fluctuation in

the plot at lower values of the level m; this is because the level m is composed of 2m wavelet basis
functions. Level 0 is simply the mean of the signal and level 1 is formed of only one wavelet, the
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Fig. 13. Wavelet coefficient variance for spatial sequence at o ¼ 154 rad=s.
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Fig. 14. Wavelet coefficient variance for spatial sequence at o ¼ 154 rad=s. D ¼ 4 (solid), 8 (dotted), 12 (dashed).
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form of the particular wavelet used therefore has an effect on the lower levels and the gradient of
the line should only be estimated using variances from higher levels [8].
In order to show that the result is not simply an artefact of the choice D ¼ 4, Fig. 14 adds the

corresponding plots for D ¼ 8 and 12.
Their is evidence here to support the conclusion that the spatial sequence is statistically self-

similar. The presence of some structure in the data is therefore confirmed, although it is
unfortunately no help in establishing a surrogate model.
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6. Uncertainty propagation: FORM

This section is concerned with the first-order reliability method (FORM). The theory and
application of this approach are textbook material [9], but the salient facts will be summarised
here.
As far as this paper is concerned, FORM is used to approximate the density function of a

response random variable Z given the density functions of the input random variables X 1; . . . ;X n.
In order to estimate the cumulative density function (CDF) one must compute

PðZoz0Þ (17)

for all values z0 2 ½0; 1�. Exchanging this problem for one involving the independent variables, one
arrives at an integral,

PðZoz0Þ ¼

Z
� � �

Z
zðx1;...;xnÞoz0

pðx1; . . . ;xnÞdx1; . . . ;dxn, (18)

where pðx1; . . . ; xnÞ is the joint probability function of the input variables. In geometrical terms
this integral is the volume under the joint density function bounded by the limit surface

gðxÞ ¼ zðx1; . . . ;xnÞ � z0 ¼ 0. Except in very restricted cases, this integral is analytically
intractable and needs to be evaluated numerically. One approach is to use a Monte Carlo
scheme, but that proves too expensive if z is expensive to compute or the probability is small. The
solution is to make a change of variables. A nonlinear transformation is made which converts the
vector ðx1; . . . ;xnÞ into a vector ðu1; . . . ; unÞ where the components have independent Gaussian
distributions (although it is theoretically possible to do this with the Rosenblatt transformation, it
is rarely practically possible and the approximate Nataf transformation is used [9]). The limit
surface gðxÞ is carried into a surface gðuÞ, and the integral of interest becomes,

pðZoz0Þ ¼

Z
� � �

Z
gðuÞo0

pðu1; . . . ; unÞdu1; . . . ; dun. (19)

Now, although the integrand has factored into a sequence of univariate Gaussians, the domain of
integration (gðuÞo0) is usually very complicated and the integral is still analytically impossible. At
this point, a second approximation is made and the limit surface is replaced by a hyperplane
glðu1; . . . ; unÞ ¼ a1u1 þ � � � þ anun þ a0 ¼ 0. (This is FORM, if the limit surface is approximated by
a quadratic, the result is the second-order reliability method—SORM.) The hyperplane is
computed by taking a first-order Taylor approximation about the point on the true limit surface
nearest the origin (the mode of pðuÞ). This point is called, for obvious reasons, the Most Probable
Point or MPP and the distance of this point to the origin is usually denoted b. The integral,

pðZoz0Þ ¼

Z
� � �

Z
gl ðuÞo0

pðu1; . . . ; unÞdu1; . . . ; dun (20)

can be carried out analytically and the result is Fð�bÞ where F is the standard Gaussian CDF.
Note that the result depends critically on the availability of the gradient rug. (In SORM, the

Hessian of g is needed.) It will be shown later that this leads to serious problems for the simple
nonlinear system discussed earlier.
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First consider a linear system for illustrative purposes. This is obtained by setting k3 ¼ 0 in Eq.
(1). The problem considered here is simply that of obtaining the PDF of the response amplitude
under the assumption that the input parameters o (forcing frequency) and x0 (initial condition)
have independent uniform distributions on the intervals ½160; 180� rad=s and ½0; 0:005�m. In order
to have a basis for comparison later, a Monte Carlo calculation was carried out. 5000 points were
taken from the ðo;x0Þ distribution and the response of the system in Eq. (1) was computed using a
Runge–Kutta scheme in Matlab. The 5000 responses were used to estimate the PDF using kernel
density estimation (KDE) [10], and the result is as shown in Fig. 15. The overall result is
undersmoothed as the calculation of the smoothing parameter attempted to preserve the steep
sides of the distribution.
The next calculation computed the CDF of the response distribution by taking 100 values over

the range of the amplitude and running a FORM calculation for each. The PDF was then
obtained by fitting a least-squares polynomial to the CDF and differentiating the result
analytically. The result is shown in Fig. 16. In this particular case, the calculation required
approximately 5/6 times the number of function evaluations of the Monte Carlo method but gave
a much smoother representation of the PDF. This shows the utility of the FORM method. The
software used here is a minor modification of the FERUM package [11].
The next calculations restored the cubic term to Eq. (1). In the first, a Monte Carlo approach

with 5000 evaluations yielded the density in Fig. 17. The result is clearly bimodal reflecting the
bifurcative nature of the problem.
In the next calculations, a FORM analysis was attempted. Several runs were taken in an

attempt to get values for the CDF, all failed. This is due to the fractal nature of the response
surface as discussed in the last section. The FORM software has to approximate the derivatives of
the limit-surface in the u-space, but in this case this is a linear transformation of the limit surface
in the x-space which is self-similar. In practice, this means that every neighbourhood of the Most
Probable Point contains high- and low-amplitude responses. In an attempt to form the derivative,
the software continually reduces the step-size in order to stabilise the discrete difference, but this
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Fig. 15. Kernel density estimate of linear system response PDF.
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Fig. 16. Estimates of linear system response PDF. KDE (solid), Form (dashed).
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Fig. 17. Kernel density estimate of nonlinear system response PDF.
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never happens and the calculation is abandoned when the step size is at machine precision. It
should be emphasised that this is not a problem with the software implementation, but with the
FORM method. One also observes that SORM would behave even more badly as a result of
trying to estimate the Hessian.
7. Choice of uncertainty theory

The failure of the two methods discussed in the previous sections can be attributed to the fact
that a probabilistic description of the uncertainty was attempted. In both cases, the particular
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pathology of the nonlinear system violated the basic requirements of the theory. In fact, there are
many uncertainty frameworks available, commonly used examples are: evidence or Dempster–-
Shafer theory [12,13], possibility theory [14], fuzzy logic [15], interval analysis [16] (and variants
like affine arithmetic [17]) and convex models and information-gap theory [18,19]. (It is important
to stress that this section is not intended as a critique of probabilistic analysis in general. Many
modern developments in modern probabilistic reliability theory have simple been ignored here.
The intention is simply to raise that alternative uncertainty theories may also applied with
success.)
In terms of the nonlinear system problem of this paper, one might speculate that one of these

alternative uncertainty formulations might be more suitable. In fact this is the case and the trick is
to relax the requirements of the theory and move to interval analysis [16]. Asking for a
probabilistic decription of the response amplitude was simply asking for too much. If one does not
require a density, i.e. one simply asks for the support of the response, interval analysis allows the
use of the harmonic balance FRF shown in Fig. 1 to give a qualitative solution of the problem as
in Fig. 18. The important feature of the response—its bimodality is immediately obvious. Note
that Fig. 18 is just a schematic and does not depict any of the detailed calculations carried out
earlier.
8. Conclusions

There are essentially two threads to this paper. The first is to raise the issue that nonlinearity is
likely to present problems for uncertainty analysis. This is not a particularly startling statement in
itself, but the paper illustrates the point by presenting a simple nonlinear system which presents
unsolvable problems; at least unsolvable in the context of the basic methods applied. (The reader
should note that there is a huge literature in probabilistic reliability theory describing a broad
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range of techniques which are simply not discussed here.) Great care should be taken in
extrapolating from the simple system here to the highly complex computer simulations currently
being undertaken and this is because the behaviour of nonlinear structural systems with very high
numbers of degrees of freedom is simply not understood.
The last section shows very briefly that alternative uncertainty theories can be used profitably in

situations where probabilistic methods fail and allows a return to the thesis discussed in the
introduction to this article, namely that, in terms of uncertainty analysis, structural dynamics has
arguably three main concerns: quantification of uncertainty in the context of the main theories,
fusion of descriptions by different theories and propagation of uncertainty through systems and
processes. The solution of these problems with any degree of comprehensiveness is a huge task
and will occupy many researchers for many years.
Acknowledgements

KW would like to thank Drs. Francois Hemez and Scott Doebling of Los Alamos National
Laboratory, New Mexico, USA, for many useful discussions and for inviting an earlier verison of
this paper for presentation in a special session of the International Modal Analysis Conference.
KW and MIF would also like to thank the EPSRC for providing the funding which allowed them
to collaborate on this paper.
References

[1] N.C. Rasmussen, the U.S. Atomic Energy Commission and the U.S. Nuclear Regulatory Commission NUREG-

75/014, WASH-1400, reactor safety study: an assessment accident risks in U.S. commercial nuclear power plants,

1975.

[2] M. Anderson, Presentation at Workshop on Model Validation and Uncertainty Quantification at the 19th

International Modal Analysis Conference, Orlando, Florida, Uncertainty quantification at Los Alamos National

Laboratories, 2002.

[3] K. Worden, On jump frequencies in the response of the Duffing oscillator, Journal of Sound and Vibration 198

(1996) 522–525.

[4] S.W. Doebling, F.M. Hemez, Model Validation and Uncertainty Quantification, Short Course Notes, Los Alamos

Dynamics, 2001.

[5] J.M.T. Thompson, H.B. Stewart, Nonlinear Dynamics and Chaos, second ed., Wiley, New York, 2001.

[6] Ch.K. Chui, An Introduction to Wavelets, Academic Press, Inc., San Diego, 1992.

[7] Y. Meyer, Wavelets. Algorithms and Applications, SIAM, Philadelphia, 1993.

[8] G.W. Wornell, Signal Processing with Fractals: A Wavelet Based Approach, Prentice-Hall Signal Processing Series,

Prentice-Hall, Englewood Cliffs, NJ, 1996.

[9] R.E. Melchers, Structural Reliability Analysis and Prediction, second ed., Wiley, New York, 1999.

[10] B.W. Silverman, Density Estimation for Statistics and Data Analysis, Chapman & Hall Monographs on Statistics

and Applied, Probability, vol. 26, Chapman & Hall, London, 1986.

[11] FERUM Code and Manual available from: http://www.ce.berkeley.edu/�haukaas.

[12] A.P. Dempster, Upper and lower probabilities induced by a multi-valued mapping, Annals of Mathematical

Statistics 38 (1967) 325–339.

[13] G. Shafer, A Mathematical Theory of Evidence, Princeton University Press, Princeton NJ, 1976.

http://www.ce.berkeley.edu/~haukaas
http://www.ce.berkeley.edu/~haukaas


ARTICLE IN PRESS

K. Worden et al. / Journal of Sound and Vibration 288 (2005) 601–621 621
[14] D. Dubois, H. Prade, Possibility Theory: An Approach to Computerised Processing of Uncertainty, Plenum Press,

New York, 1986.

[15] L.A. Zadeh, Fuzzy sets, Information and Control 8 (1965) 338–353.

[16] R.E. Moore, Methods and Applications of Interval Analysis, SIAM, Philadelphia, PA, 1979.

[17] J.L.D. Comba, J. Stolfi, Proceedings of SIBGRAPH ’93, Affine arithmetic and its applications to computer

graphics, 1993, pp. 9–18.

[18] Y. Ben-Haim, I. Elishakoff, Convex Models of Uncertainty in Applied Mechanics, Elsevier, Amsterdam, 1990.

[19] Y. Ben-Haim, Set-models of information-gap uncertainty: axioms and an inference scheme, Journal of the Franklyn

Institute 336 (1999) 1093–1117.


	Some observations on uncertainty propagation through a simple nonlinear system
	Introduction
	A simple nonlinear system
	Uncertainty propagation: response surface analysis
	Fourier analysis
	Wavelet analysis
	Wavelets
	Wavelets and fractals
	Application to the data

	Uncertainty propagation: FORM
	Choice of uncertainty theory
	Conclusions
	Acknowledgements
	References


